
Eur. Phys. J. B 39, 335–339 (2004)
DOI: 10.1140/epjb/e2004-00198-5 THE EUROPEAN

PHYSICAL JOURNAL B

Quantitative expression of the spin gap via bosonization
for a dimerized spin-1/2 chain

E. Orignaca
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Abstract. Using results on the mass gap in the sine-Gordon model combined with the exact amplitudes
in the bosonized representation of the Heisenberg spin-1/2 chain and one-loop renormalization group, we
derive a quantitative expression for the gap in a dimerized spin-1/2 chain. This expression is shown to be
in good agreement with recent numerical estimates when a marginally irrelevant perturbation is taken into
account.

PACS. 75.10.Pq Spin chain models

Low dimensional antiferromagnets have been the subject
of intense scrutiny both theoretical and experimental for
the last twenty years. The simplest model, the spin-1/2
Heisenberg antiferromagnet, is integrable [1] and can be
mapped onto a continuum field theory [2–4] which allows
the full determination of its zero temperature critical be-
havior. The presence of a marginally irrelevant operator
in the continuum theory induces logarithmic corrections
to the critical scaling [5]. The corrections to scaling of the
correlation functions [5–7], NMR relaxation rates [8,9],
and susceptibilities [10,11] in this model have been inves-
tigated in details. Further, when the Heisenberg spin-1/2
chain model is perturbed by a relevant operator such as
an alternation of the exchange coupling, the marginal op-
erator gives rise to a logarithmic correction to the power
law dependence of the gap on the perturbation [5]. Such
logarithmic corrections to scaling in the gap in the con-
text of two dimensional statistical mechanics of the four
state Potts model whose transfer matrix is related to the
Hamiltonian of the alternating Heisenberg chain [12–15].
In [14] in particular, it was shown that the dependence of
the gap ∆ on the dimerization δ, was changed from the
form ∆ ∼ δ2/3 [16,17] to the form ∆ ∼ δ2/3/| ln δ|1/2.
Such logarithmic behavior was confirmed by numerical
calculations in [18–20]. Alternatively, the dependence of
the gap on the dimerization can be described by an ef-
fective power law form with an exponent that deviates
from 2/3 [21,22]. For a not too small dimerization, it
is found that the resulting effective exponent is close to
2/3 [21]. Further, by considering a Heisenberg chain with
an additional next-nearest neighbor coupling finely tuned
to cancel the marginal operator, a pure power law with
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exponent 2/3 can be obtained obtained for the gap [23].
Recently, the logarithmic corrections were investigated in
greater details using the DMRG [24]. The data for the gap
could be fitted to the form:

∆ = α1/2
gap

δ2/3

(ln δ0/δ)1/2
, (1)

with αgap = 19.4 and δ0 = 115 or alternatively by the
power law form ∆ = 1.94δ0.73. A difficulty that arises
when comparing the predictions of the Renormalization
Group approach [5,12–15] with the numerical results is
that the former approach can only predict the exponents,
and not the non-universal prefactors. However, exact re-
sults for the sine-Gordon model combined with recent
progress [25,26] on the bosonization treatment of the
Heisenberg spin 1/2 chain using integrability make it pos-
sible to overcome these two difficulties and obtain the pref-
actor in the expression of the gap at least in the absence
of logarithmic corrections. Assuming that the gap varies
continuously as the marginally irrelevant is turned on, it is
then possible to obtain an expression of the gap as a func-
tion of the marginally irrelevant operator, with no further
unknowns. Fitting the data of [24] then allows the determi-
nation of the order of magnitude of the marginally irrele-
vant interaction. The obtained value can then be checked
against the one obtained in [5]. A similar approach has
been used previously in [27] to estimate the gaps induced
by a staggered field in an anisotropic spin 1/2 chain.

The Hamiltonian of the dimerized spin-1/2 chain
reads:

H = J
∑

n

(1 + (−)nδ)Sn · Sn+1 (2)

For δ = 0, this Hamiltonian reduces to the one of the uni-
form antiferromagnetic Heisenberg chain (J > 0) the low
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energy properties of which are described by the following
continuum Hamiltonian [4,14]:

H =
∫

dx

2π

[
uK(πΠ)2 +

u

K
(∂xφ)2

]

− 2g2

(2πa)2

∫
dx cos

√
8φ, (3)

where [φ(x), Π(x′)] = iδ(x − x′), u = π
2 Ja and K = 1 −

g2
2πu . The latter conditions ensures SU(2) symmetry, and
for g2 < 0 the operators (πΠ)2 − (∂xφ)2 and cos

√
8φ are

both marginally irrelevant resulting a gapless fixed point.
The exact bare value of g2 has been estimated in [5].

The spin operators can be expressed as a function of
Π, φ as:

Sn

a
= (J+ + J−)(na) + (−)x/an(na), (4)

J+
r (x) = (Jx

r + iJy
r )(x) =

1
2πa

e−i
√

2(θ−rφ)(x)η↑η↓, (5)

Jz
r =

1
2π

√
2

[rΠ − ∂xφ] , (6)

n+(x) = (nx + iny)(x) =
λ

πa
e−i

√
2θ(x)η↑η↓, (7)

nz(x) =
λ

πa
sin

√
2φσ(x), (8)

where a is a lattice spacing, η↑/↓ represent Majorana
fermion operators that can be omitted in some cases (see
e.g. Ref. [28] for a discussion of this point), and θ is de-
fined by θ(x) = π

∫ x

−∞ dx′Π(x′). The constant λ is a non-
universal parameter that depends on the lattice model
being considered. Recently, this parameter has been de-
termined in the case of the isotropic Heisenberg spin-1/2
chain [25,26], and it was found that:

λ =
(π

2

)1/4

. (9)

In order to determine the bosonized Hamiltonian of the
dimerized spin-1/2 chain (2), all we need is a bosonized
expression of the dimerization operator

∑
n(−)nSn ·Sn+1.

Using (4), the corresponding expression is easily extracted
from:

1
a
Sn · Sn+1 = (uniform)

+ (−)na [−(J+ + J−)(na) · n((n + 1)a)
+n(na) · (J+ + J−)((n + 1)a)] . (10)

The bosonized expression of the dimerization operator, is
thus obtained from the the short distance expansion of
JR,L and n. Using equations (5) and (7) with Glauber
identities, one finds the following expressions:

n±(x)(J+ + J−)∓(x + a) =
λ

(πa)2
cos

√
2φ(x) + . . .

(11a)

(J+ + J−)±(x)n∓(x + a) = − λ

(πa)2
cos

√
2φ(x) + . . .

(11b)

The change of sign is a consequence of the application
of the Glauber identity taking into account the commu-
tation relation [φ(x), θ(x′)] = iπY (x′ − x), Y being the
Heaviside step function. Finally, nz(x + a)(Jz

+ + Jz
−)(x)

and nz(x)(Jz
+ +Jz

−)(x+a) are respectively obtained from
equations (6) and (8) the two following short distance
expansion:

− 1
2π

√
2
∂xφ(x + a) sin

√
2φ(x) =

1
2πa

cos
√

2φ(x) + . . .

(12a)

− 1
2π

√
2
∂xφ(x) sin

√
2φ(x + a) = − 1

2πa
cos

√
2φ(x) + . . .

(12b)

which can be derived by normal ordering the product
of the two operators [29,30]. A sketch of the derivation
is given in the appendix. It is easily seen that equa-
tions (11, 12) are compatible with spin rotational invari-
ance. Combining the expressions (11, 12) in (10), and us-
ing the value of λ in equation (9) we finally obtain that:

1
a
Sn · Sn+1 = uniform + (−)n 3

π2a

(π

2

)1/4

cos
√

2φ. (13)

Actually, the bosonized expression of the spin operator
is more complicated than equation (4). It can be found
for instance in [31]. Ignoring the contribution of the de-
scendant fields in the expressions (2.35) and (2.36) and
requiring that at the point with SU(2) symmetry the cor-
relators 〈Sa

mSa
n〉 are the same for all a, the expansion re-

duces to (4). However, when descendant fields are taken
into account, no such reduction takes place, and the full
expansion has to be considered. The expression (13) is
then only the first term of an expansion of the dimeriza-
tion operator [32], and the coefficient of the term cos

√
2φ

could be modified by the higher order terms of the expan-
sion. However, we shall see in the following that retaining
only the first term of this expansion (13), already yields
a rather good estimate of the gap when compared to nu-
merical calculations. Using equation (13), the continuum
Hamiltonian describing the dimerized spin 1/2 chain at
low energy reads:

H =
∫

dx

2π

[
uK(πΠ)2 +

u

K
(∂xφ)2

]
− 2g1

(2πa)2
cos

√
2φ

− 2g2

(2πa)2

∫
dx cos

√
8φ. (14)

Note that in (14), the sign of g1 does not matter as it can
always been rendered positive by the shift φ → φ+π/

√
2.

In (14), we have:

g1 = 6J
(π

2

)1/4

δa. (15)

As we noted before, g2 is a marginally irrelevant field
which flows to 0 if g1 = 0. Let us assume for a moment that
we can neglect completely the presence of this marginally
irrelevant operator and take K = 1, g2 = 0 in (14). Then,
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Fig. 1. Comparison of the gap ∆(δ,L) = (1 + δ)(e1(δ, L) −
e0(δ, L)) obtained from the data of Table 1 of reference [24]
for L = 28, 48, 96, 144, 192 with the expressions (17) with-
out logarithmic corrections (dash-dotted line) and the expres-
sion (29) including logarithmic corrections with y2(0) = −0.22
i.e. αgap = 20.2 and δ0 = 148 (dotted line). For large L, the
gap extrapolates to the expression (29).

the Hamiltonian (14) becomes the sine-Gordon model.
This model is integrable, and the expression of the gap
can be found in [33], or in [34] equation (12). In the no-
tations of [34], β2 = K/4 = 1/4, and µ = 3/π3(π/2)1/4δ
(where we have used the fact that the velocity u = π

2 Ja).
The dimensionless gap M is then given by:

M =
2√
π

Γ (1/6)
Γ (2/3)

[
Γ (3/4)
Γ (1/4)

3
π2

(π

2

)1/4

δ

]2/3

� 1.097δ2/3, (16)

and the energy gap is given by ∆ = u
aM i.e.

∆

J
=

π

2
M � 1.723δ2/3. (17)

We note that the formula (16) has already been applied to
calculate the gap of the dimerized spin 1/2 chain in [35],
but the value of λ, equation (9) was not known. A for-
mula similar to (16) has also been derived in the case of
a spin− 1

2 chain in a staggered magnetic field [36]. The
formula (17) is in reasonable agreement with the result
quoted in [21] who reported that ∆/J = 1.5δ0.65 as two
expression differ at most by 6% for 0.01 ≤ δ ≤ 0.1. Com-
paring our expression (17) to the one of reference [24],
∆/J = 1.94δ0.73, we find that they are in agreement
within a 10% relative error when δ ≥ 0.03. For lower val-
ues of δ, the two results deviate sensibly. It can also be
seen in Figure 1 that for low dimerization the extrapo-
lation of the numerical results of reference [24] deviates
significantly from the prediction of (17). As we shall see,
this is the result of the logarithmic corrections.

In [34], the expression of the ground state energy was
also given in dimensionless units in equation (14). Using

Fig. 2. Comparison of the expression of ground state energy
per spin e0 − ẽ0(δ, L) = −E0(δ,L) taken from Table 1 of refer-
ence [24] for L = 28, 48, 96, 144, 192 with the expression derived
in this paper without logarithmic corrections (18) (dash-dotted
line) and with logarithmic corrections (30) for y2(0) = −0.22
i.e. α = 1.86 and δ0 = 148 (dotted line). Including logarithmic
corrections leads to a better agreement for small dimerization
as L is increased. However, deviations are still significant in
contrast with the case of the gap.

this expression, we obtain for the ground state energy:

E0

J
= −π

2
J

M2

4
tan

π

6
� −0.2728 δ4/3 (18)

This expression is compared to the one quoted in [24],
E0/J = −0.39δ1.45. For low dimerization δ < 0.01, these
two expressions start to deviate by more than 20%. Also,
as can be seen in Figure 2, the equation (18) does not
provide a good extrapolation of the numerical results of
reference [24]. Till now, we have totally neglected the pres-
ence of the marginally irrelevant operator cos

√
8φ. As we

shall now see, the corrections to scaling [5,14] induced by
this operator in the gap formula, are responsible for the
discrepancies between the numerical and the analytical re-
sults. Similar results have been obtained in the case of a
staggered magnetic field [37], albeit with a different ex-
ponent for the logarithmic corrections. The renormaliza-
tion group equations associated with the Hamiltonian (14)
read [13]:

d

dl

(
1
K

)
=

1
8
y2
1 +

1
2
y2
2 , (19)

dy1

dl
=

(
2 − K

2
+ y2

)
y1, (20)

dy2

dl
= (2 − 2K)y2 +

y2
1

4
, (21)

where we have introduced yi = gi/(πu). For y1 = 0, the
SU(2) symmetric flow is recovered for K = 1 − y2/2.
Then, the equations (19) reduce to the single Kosterlitz-
Thouless [38] dy2/dl = y2

2 . We see that for y2 < 0, this
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equation flows to the fixed point y∗
2 = 0, with the following

flow equation:

y2(l) =
y2(0)

1 − y2(0)l
. (22)

Let us now assume [13] that we have turned on a very
small y1. Using the initial conditions with SU(2) symme-
try, we can easily show that the RG equations reduce to:

dy2

dl
= y2

2 +
1
4
y2
1 , (23)

dy1

dl
=

(
3
2

+
3
4
y2

)
y1. (24)

If we assume that y1(0) 	 y2(0), we can assume that
in (23), we can take y1 = 0, so that the flow of y2 is
given by (22). Then, equation (24) is trivially integrated,
leading to:

y1(l) = y1(0)
e

3
2 l

(1 + |y2(0)|l)3/4
. (25)

This equation should break down for a scale l0 such that
y1(l0) ∼ y2(l0). One has:

el0(1 + y2(0)l0)1/6 =
|y2(0)|2/3

y1(0)2/3
. (26)

For l > l0 the contribution of y2 to the renormalization of
y1 being negligible, y1(l) = e3/2(l−l0)y1(l0). The scale l∗
at which y1(l) ∼ 1 is thus given by:

e−l∗ = e−l0
(1 + |y2(0)|l0)2/3

|y2(0)|2/3
=

|y1(0)|2/3

(1 + |y2(0)|l0)1/2
, (27)

An approximate form of l0 can be obtained by iterat-
ing (26) leading to:

e−l∗ � |y1(0)|2/3

(
1 + 2

3 |y2(0)| ln
∣∣∣ y2(0)
y1(0)

∣∣∣)1/2
. (28)

Since the scaling of the gap is ∆ ∼ e−l∗ and the scaling
of the ground state energy is E0 ∼ e−2l∗, for y1 → 0, these
formulas are in agreement with the scaling predicted in [5].

We now make an important assumption. We assume
that in the formulas (17, 18), we can replace M with Ce−l∗,
l∗ being given by (28), with C being chosen in such a
way that for y2 = 0, the resulting M agrees with (16).
This is a uncontrolled approximation as the model (14) is
non-integrable but it is partially justified by the fact that
the energy and the correlation length evolve continuously
as a function of the parameter y2 in the vicinity of the
integrable point. With this assumption, and noting that
the definition of y1 and equation (15) imply y1 = 1.3612δ,
we obtain that C = 0.8932.

We are lead to the following expressions of the gap:

∆

J
=

1.723δ2/3

(
1 + 2

3 |y2(0)| ln
∣∣∣ y2(0)
1.3612δ

∣∣∣)1/2
, (29)

and of the ground state energy difference:

−E0

J
=

0.2728δ4/3

1 + 2
3 |y2(0)| ln

∣∣∣ y2(0)
1.3612δ

∣∣∣ . (30)

These equations are trivially reduced to the form of the
equations (7, 8) in [24], with:

α1/2
gap =

1.723√
2
3 |y2(0)|

(31)

α =
0.2728
2
3 |y2(0)| (32)

ln δ0 =
3

2|y2(0)| + ln
( |y2(0)|

1.3612

)
. (33)

A good extrapolation for large L of the numerical data for
the gap obtained in reference [24] is obtained using equa-
tion (29) with y2(0) = −0.22 (see Fig. 1). This leads to
δ0 = 148, αgap = 20.2 and α = 1.86, whereas the values re-
ported by Papenbrock et al. are δ0 = 115, αgap = 19.4 and
α = 2.2. The corresponding extrapolation for the ground
state energy using equation (30) with the same value of
y2(0) = −0.22 is better than the one obtained without log-
arithmic corrections (see Fig. 2). However for large system
sizes, the numerical results of [24] do not extrapolate to
the form (30) but to a higher value. This could be due
to the non-singular part of the free-energy which is not
taken into account in the Renormalization Group calcu-
lation. Further, comparing the expressions (29) with the
expression quoted in reference [24], ∆ = 1.94δ0.73, it is
seen that in the range 10−4 ≤ δ ≤ 0.1 they differ by less
than 10%. For the energy, the agreement is slightly worse
with the two expression differing by about 16%. The value
of y2(0) = −0.22 also compares reasonably well with the
one quoted in [5,39] y0 = −0.25. Thus, taking into account
the logarithmic corrections leads to a clear improvement
of the estimation of the gap and the ground state energy.

To summarize, we have shown that the results of refer-
ence [24] could be recovered from a bosonization approach
including the appropriate operator renormalizations, and
using exact results for the sine-Gordon model combined
with a one-loop RG. The amplitude of the marginally rel-
evant operator was found to be in reasonable agreement
with an independent estimate coming from logarithmic
corrections to the dependence of the gaps in a spin-1/2
chain. Given the relatively large value of the coupling con-
stant, we are at the limit of applicability of the one-loop
RG. Better agreement might be obtained by going beyond
the one-loop approximation [40] and finding the contribu-
tion of the descendent fields to equation (13). The present
approach does not depend crucially on integrability as it
is also possible to determine the parameter λ in (4) for a
non-integrable model via numerical calculations [27,41].

The author thanks R. Chitra, G. Chitov, R. Citro, F.H.L.
Essler, T. Giamarchi and P. Lecheminant for discussions.
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Appendix A: Derivation of the short distance
expansion

The short distance expansion (12) has been derived
in [29,30] using a fermionic representation. In this ap-
pendix, we give an alternative derivation using the bosonic
representation. We start from the equation:

: ∂xφ(x′) :: V (φ(x)) :=: ∂xφ(x′)V (φ(x)) :

+ :
dV

dφ
(φ(x)) : ∂x〈φ(x′)φ(x) − φ2〉, (34)

which is easily obtained by expanding V (φ) as a power
series and applying Wick’s theorem [42]. In the case of
the massless free boson, we have:

〈φ(x′)φ(x) − φ2〉 =
1
2

ln
∣∣∣∣x − x′

a

∣∣∣∣ , (35)

which leads to the expansion:

: ∂xφ(x′) :: V (φ(x)) :=: ∂xφ(x′)V (φ(x)) :

+
−1

2(x′ − x)
:

dV

dφ
(φ(x)) : (36)

Applying this formula in the case of V (φ) = sin
√

2φ leads
to equation (12).
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